Photonic Architectures for Equilibrium High-Temperature Bose-Einstein Condensation in Dichalcogenide Monolayers
نویسندگان
چکیده
Semiconductor-microcavity polaritons are composite quasiparticles of excitons and photons, emerging in the strong coupling regime. As quantum superpositions of matter and light, polaritons have much stronger interparticle interactions compared with photons, enabling rapid equilibration and Bose-Einstein condensation (BEC). Current realizations based on 1D photonic structures, such as Fabry-Pérot microcavities, have limited light-trapping ability resulting in picosecond polariton lifetime. We demonstrate, theoretically, above-room-temperature (up to 590 K) BEC of long-lived polaritons in MoSe2 monolayers sandwiched by simple TiO2 based 3D photonic band gap (PBG) materials. The 3D PBG induces very strong coupling of 40 meV (Rabi splitting of 62 meV) for as few as three dichalcogenide monolayers. Strong light-trapping in the 3D PBG enables the long-lived polariton superfluid to be robust against fabrication-induced disorder and exciton line-broadening.
منابع مشابه
Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed...
متن کاملPhotonic Crystal Architecture for Room-Temperature Equilibrium Bose-Einstein Condensation of Exciton Polaritons
We describe photonic crystal microcavities with very strong light-matter interaction to realize roomtemperature, equilibrium, exciton-polariton Bose-Einstein condensation (BEC). This goal is achieved through a careful balance between strong light trapping in a photonic band gap (PBG) and large exciton density enabled by a multiple quantum-well (QW) structure with a moderate dielectric constant....
متن کاملCoherence and antibunching in a trapped interacting Bose-Einstein condensate
We present a model for the equilibrium quantum statistics of a condensate of repulsively interacting bosons in a two-dimensional trap. Particle correlations in the ground state are treated exactly, whereas interactions with excited particles are treated in a generalized Bogoliubov mean-field theory. This leads to a fundamental physical picture for the condensation of interacting bosons through ...
متن کاملBose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.
The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This ...
متن کاملBose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation
We develop a stochastic Gross-Pitaveskii theory suitable for the study of Bose-Einstein condensation in a rotating dilute Bose gas. The theory is used to model the dynamical and equilibrium properties of a rapidly rotating Bose gas quenched through the critical point for condensation, as in the experiment of Haljan et al. #Phys. Rev. Lett. 87, 210403 !2001"$. In contrast to stirring a vortex-fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014